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2.1 – Introduction 
The resistance strain gauges are sensors for detection of relative deformations based on 
measuring of an intermediate quantity. They take advantage of the properties that the electric 
resistance changes when the conductor shows a deformation. The fact that some metal strings 
change their resistance owing to their deformation was published for the first time in 1856 by a 
Scottish mathematician and physicist William Thomson, lord Kelvin (1824-1907). This 
phenomenon can be quantified by means of the ratio of relative resistance variation and relative 
variation of length of the deformed sensor, i.e. 

L

R
dR

L
dL
R

dR

G
ε

==   , 

where R is initial resistance, L is initial length and εL is relative deformation. The quantity G is 
often called a ,,gauge – factor“, or a strain coefficient kd. 

 

2.2 – Metallic Resistance Strain Gauges 
Relation between the length variation and the conductor resistance. 

The conductor resistance is a function of three variables: 

A
LR ⋅= ρ  

where R is ohmic resistance of the conductor, ρ is specific resistance of the conductor material, L 
is the conductor length and A is the conductor cross-sectional area. Small changes of the 
conductor resistance are caused by the change of all three quantities, as the conductor deforms, 
i.e. 
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By a simple modification of the equation (2.3) we shall get a relation for relative change of the 
deformed conductor in the following shape:   
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For simplification let us consider a circular cross section of the conductor, then for the change of 
the cross-sectional area of the conductor we can write: 

drrdA ⋅= π2  
where r is an initial radius of the conductor cross-section. By means of the above-given equations 
we can write: 
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where 
L
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L =ε  is longitudinal and 

r
dr

r =ε is transverse deformation of the conductor. 
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The relation between εL and εr is given by the Poisson’s number µ, i.e. 

Lr εµε ⋅−=  

After the conversion we shall get: L
L
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Comparing the equation (2.8) with the equation (2.1) we shall get the following expression for 
the strain coefficient kd, i.e. 
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It is obvious that the magnitude of the coefficient kd depends on material (Poisson‘s number µ, 
resistance ρ), but also on immediate magnitude of the longitudinal deformation εL of the 
conductor. The dependence of the resistance variation on deformation is not necessarily linear; 
and really, considering larger areas of deformation, kd is approximately constant only in some 
metals and alloys. 

 

2.3 – Calibration of Strain Coefficient by Simple Bending 
Considering the complicated nature of the strain coefficient of the strain-gauge, it is suitable to 
determine this coefficient experimentally on a ready strain-gauge. In case the gauge body is in 
the shape of a long thin flat strip, a testing device based on the principle of a beam loaded by 
simple bending is usually used. In the following part let us focus on bending of a straight beam of 
the constant cross section through the methods of technical elasticity. 

Strain and stress of the filaments of a long straight beam at simple bending. 
Each cross section of the bended beam transmits a bending moment M0 and shearing force T (see 
Fig. 2.1).  Let us investigate the momentum and shearing force behaviour by the method of 
virtual section.   

 
 

 
 

 
   

 
 

 

Fig.2.1 
 
Let us remind that the behaviour of the bending moment and the shearing force are caused by 
external loading of the beam. By means of the balance equations of an extracted beam element 
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(see Fig.2.1) differential relations between the bending moment M0, shearing force T and external 
loading q(x) can be formulated. These relations are called Schwedler’s sentences. It is valid: 

( ) ( )xT
dx

xdM =0

                  and                    
( )xq

dx
xdT

−=
)(

  .                 (2.1 and 2.2) 

At simple bending M0=constant. It is obvious from the equation 2.1 that at simple bending the 
shearing force T(x) is identically equal to zero. For simple bending so called Bernoulli 
hypothesis is established in technical elasticity. According to this hypothesis the plane cross-
sections perpendicular to the longitudinal axis of the beam before the deformation will remain 
plane after the deformation as well and will be perpendicular to the deformed longitudinal axis of 
the beam (see Fig. 2.2). 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 2.2 
 

If we draw virtual longitudinal filaments through the beam, then it is clear from the Fig.2.2., that 
part of these filaments are prolonged, part of them are shortened and part of them do not change 
their length. The filaments that do not change their length fill so called neutral area. The neutral 
area crosses every cross-section at neutral axis. Providing the beam does not transmit any axial 
force N it can be shown that the neutral axis during bending has to pass through the centre of 
gravity of the cross-section. 

Let us denominate ρ the flexure radius of the neutral area. Let us denominate ϕ the angle of 
displacement of the sections A1 and A2 after deformation. Then the length of the unstrained 
filament is: 

ϕρ ⋅=0L
 

The length of the strained filament is: 
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( )ϕρ yL +=
 

Relative deformation of the filament at the distance y from the neutral area is: 

( ) ( )
ρρϕ

ρϕϕρε yy
L

LLy =−⋅+=−=
0

0

                                          (2.3) 

 
Simple bending is uniaxial state of stress for which the Hooke’s law is valid. 

εσ ⋅= E  
i.e. 

( )
ρ

σ
yEy ⋅=

  .                                                        (2.4) 
The relation (2.3) for deformation and the relation (2.4) for stress show that the largest 
magnitudes are reached in the edge filaments i.e. in the filaments the most distant from the 
neutral axis. By means of the equation of the momentum balance to the neutral axis we shall find 
the relation between torsion ρ of the neutral plane and the bending moment at the given cross-
section of the beam (see Fig.2.3). 

 

 

 

  

 

 

 

Fig. 2.3
 

Momentum condition 

( ) 00 =−⋅⋅∫ MdAyy
A

σ ,                                                (2.5)
 

Substituting equation (2.4) for σ(y) in the equation (2.5) and after the conversion we shall get: 

zJE
M
⋅

= 01
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  ,                                                           (2.6)
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∫ ⋅=
A

z dAyJ 2                                                            (2.7)
 

is quadratic moment of the cross-section to the neutral axis, identical with the axis z. 
Substituting the relation (2.6)´ in the relation (2.3) for the beam filament deformation we shall 
find the relation between the moment M0 of external forces and deformation of the filament 
within the distance y from the neutral axis. Thus it is true: 

( ) y
JE

My
z

⋅
⋅

= 0ε
                                                              

(2.8)
 

It is obvious from the relation stated above that the filament strain is given by: 
Ø External loading (bending moment M0) 
Ø Material rigidity (Young’s modulus of elasticity E) 

Ø Geometrical shape of the cross-section (quadratic moment of the cross-section Jz) 
Let us remark that the product (E Jz) is denominated as the flexural rigidity of the beam. 

The relation between the stress in the filament and the external loading results from the 
substitution of the relation  (2.6) into the relation (2.4), i.e. 

( ) y
J
My

z

⋅= 0σ
                                                            

(2.9)
 

As it has already been written, the maximal stress is reached in the edge filaments, i.e. for y=ymax, 
thus: 

max
0

max y
J
M

z

⋅=σ
                                                      

(2.10)
 

or, if you like 

0

0
max W

M
=σ

                                                          
(2.11)

 

where 

max
0 y

JW z=
 

The quantity W0 is a characteristic of the shape of the cross-section only and is called a modulus 
of bending resistance of the cross-section. 

The relations for Jz and W0 for common shapes of the cross sections can be found in the 
Technical Data Sheets.   
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2.4 – Measurement of Small Resistance Variations of a Strain Gauge  
2.4.1 Bridge connection 

The most common method of measuring small resistance changes of strain gauges is the bridge 
connection, usually called Wheatstone bridge (Sir Charles Wheatstone 1802-1875).  
The connection diagram is shown in the Fig. 2.4 
 

 
 

 
 

 
 

 
 

 
 

 
The change of resistance of some of the resistors R1 to R4 results in the change of electric current 
IG passing through the measurement diagonal (galvanometer). The magnitude of IG can be 
determined By means of the Kirchhoff‘s Laws. 

Let us recall the above-mentioned Kirchhoff‘s Laws: 
I. Algebraic sum of the currents in any point (nod) equals to zero, i.e. 

0
1

=∑
η

KI  . 

II. Sum of all applied voltages in the closed circuit equals to zero 

0
1

=∑
η

KU  . 

For completeness' sake let us mention also the Ohm‘s Law:      U = R·I . 
Thus for the bridge given in the Fig. 3.4 it is true: 

( )3241 RRRR
D

UI G
G ⋅−⋅⋅=   ,                                            (2.12) 
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where the determinant D in the denominator of the equation (3.12) is given 

44242

331

43432 )(

RRRRRR
RRRR

RRRRR

G

G

−+++
−+−

++−−

 

When the bridge is balanced, there is no current passing through the galvanometer, i.e. IG=0. 
The equation (3.12) results in the relation: 

3241 RRRR ⋅=⋅   .                                                      2.13 
If the magnitude of resistors changes in the balanced bridge, for example R1 changes by ∆R1, the 
bridge unbalances. The magnitude of ∆R1 can be determined in two ways.  
 

a. Zero Method 
This method uses balancing of the bridge by adding resistors in the other branches so that again 
IG=0 was valid. Let us realise balancing by a suitable change of the resistance R2. 

Then                                          ( ) ( ) 322411 RRRRRR ⋅∆+=⋅∆+   .                                       (2.14) 

Herefrom the measured change ∆R1 is given by the relation 

2
4

3
21 . Rkonst

R
RRR ∆=∆=∆  .                                             (2.15) 

The Zero Method can be applied in static measurements, when there is time enough for the 
balancing. The advantage of this method is independence of the method accuracy on the variation 
of the voltage UG. 

 

b. Deviation Method 
When applying this method, the bridge is not being balanced, but the magnitude of the current IG 
is measured directly. If the bridge is balanced and the resistance R1 changes by ∆R1, then the 
change of current in the measuring branch is 

14 RR
D

UI G
G ∆⋅⋅=∆   .                                                   (2.16) 

Considering that the change ∆R1 is very small when compared with R1, the influence of ∆R1 on 
the magnitude of the determinant D can be neglected.  Then D’=D and hence 

111 . RconstRR
D

UI G
G ∆=∆⋅⋅=∆   .                                        (2.17) 
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2.4.2 Bridge fed by a.c.-voltage 

At bridges fed by AC voltage it is necessary to consider an impedance resistor instead of the 
ohmic one, i.e.    

jXRZ +=  , 

where X is reactance 

The balance conditions are  
4

3

2

1

R
R

R
R

=   a  
4

3

2

1

X
X

X
X

=  . 

For the bridge balance it is necessary not only to balance the ohmic resistors but also reactance, 
usually those of the capacities. If resistance change ∆R1 occurs at the ohmic and capacity 
balanced bridge, the change of the current IG is proportional to this change. 
 

2.4.3 Bridge as a voltage divider 
Let two resistors R1 and R4 be put on series and connected to the constant voltage supply UG (see 
Fig. 2.5a) 
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The following relations are valid 

4

1

2

1

R
R

U
U

R

R =   .                                                         (2.18) 

 
41 RBR UUU −=   .                                                    (2.19) 

Then from the previous relations 

41

1
1 RR

RUU BR +
=   ,                                                  (2.20) 

41

4
4 RR

RUU BR +
=   .                                                  (2.21) 

Voltage Bridge 
The voltage bridge can be considered as parallel connection of two dividers of voltage (see Fig. 
2.5b).  It is obvious that for the drop of potential between the points A and B it is valid:  

21 RRG UUU −=   ,                                                   (2.22a) 

43 RRG UUU −=   .                                                   (2.22b) 

For the parallel divider and the resistors R2 and R3 we can write: 

32 RRB UUU +=   .                                                     (2.23) 

32

2
2 RR

RUU BR +
⋅=   ,                                                  (2.24) 

where 

32

3
3 RR

RUU BR +
⋅=   .                                                 (2.25) 

Substituting the relations (2.20) and (2.24) into the equation (2.22a) we shall get an expression 
for the output voltage UG in the following shape: 






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32

2

41

1

RR
R

RR
RUU BG                                            (2.26) 

 
It is clear from the equation 2.26, that the bridge is balanced, i.e. UG=0 on condition that 

3

2

4

1

R
R

R
R

=   .                                                          (2.27) 

If a resistance change by  ΔR1 occurs at the sensor R1, then it can be shown through the 
derivation of the equation (2.26), that the variation of the output voltage UG is given by the 
relation: 

( )2
41

41

1

1

RR
RR

R
RUU BG +

⋅
⋅

∆
⋅=∆   .                                         (2.28) 
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When measuring with the bridge connection, usually the resistors are selected to be R1 = R2 = R3 
= R4= R. In that case when the resistance of one bridge changes by ΔR, the output voltage at the 
diagonal of the bridge will be as follows:  

BG U
R
RU ⋅∆=∆

4
  .                                                   (2.29) 

If the resistance change occurs simultaneously in two branches, the output signal from the bridge 
is given by the remainder of the voltage changes in case that the resistance change occurred in 
the adjacent branches. In case the change occurred in the opposite branches, the output signal is 
given by the addition of the voltage changes. 
If the resistances in the adjacent branches are changed in the opposite direction, the resulting 
signal is given by their addition, i.e. with the resistance change of the same magnitude at the 
adjacent resistors the bridge remains in balance. With the resistance change of all four branches 
the resulting signal is four times as big, if the resistance change is of the same magnitude and 
opposite signs in the adjacent branches. Validity of the above-mentioned statements can be 
verified through the relation 









+

−
∆++∆+

∆+
−

+
−

∆++∆+
∆+

⋅=∆
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3322

22
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1

4411
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RR
R

RRRR
RRUU BG   .     (2.30) 

 

Temperature Compensation 
This compensation is performed by means of the compensation strain gauge placed on the same 
material as the measuring strain gauge but not submitted to the strain (see Fig. 2.6). If there is a 
temperature change during the measurement, it causes the same resistance change both at the 
measuring gauge and the strain gauge. If both these gauges are connected in the bridge in one 
parallel branch, the resistance change is eliminated by the bridge itself. 

 
 

 
 

 
 

 
 

The above given statement can again be proved through the relation (2.30). 
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