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1.1 – Basic Notions 
Internal Forces – Stress 

A general body in the state of static balance is loaded with external forces. These forces 
cause the body deformation. This deformation results in so called internal forces in the 
body.  Magnitude of the internal forces is determined by the method of a virtual section. 
The bodies with the longitudinal dimension much longer than two other dimensions are 
called bars. Join of the centres of gravity of the individual sections is called a bar axis. If 
the bar axis is a straight line, the bar is called the straight bar. The straight bar is the body 
of our interest in the 1st lecture. 
Direct (normal) stress σ is a normal internal force N related to the size of a cross section A0. 

0A
N

=σ   .                                                          (1.1) 

A bar element of the original length dx influenced by the internal forces changes its length 
to the magnitude dx + Δ dx . The change of the element length dx is thus Δdx. (see fig. 1.1) 
 

 
 

 
 

 
 

 
 

Fig. 1.1 
Relative deformation (strain) is determined by the ration of the length change and the 
original length, i.e. 

( )
dx
dxx ∆

=ε   .                                                        (1.2) 

If along the whole bar length ε(x) = const, the relative strain can be expressed from the 
definitive dimensions of the whole bar, i.e. 

0l
l∆

=ε   .                                                          (1.3) 

Normal deformation is linked with the normal stress. Normal deformation linked with 
length extension is signed as positive (+). The corresponding normal stress is tensile and is 
signed (+). Similarly, the sign (-) is introduced for pressure deformation and pressure 
normal stress. 

Axial normal strain of the bar is always linked with the lateral deformation of the opposite 
sign in two directions perpendicular to the axial deformation. 

dx+∆ dx 

∆l  
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Absolute value of the ratio of lateral deformation and longitudinal deformation is called 
Poisson’s ratio. This ratio is designated by a small Greek letter  µ or ν. 
 

1.2 – Essential Rheological Models of Technical Materials 
Rheology is part of mechanics of continuum. In this branch we investigate general laws of 
formation and growth of deformation in materials owing to various causes and in various 
thermo dynamical conditions.  Technically speaking, we look for a relation between internal 
forces (stress) and material deformation of the deformed body. 

In case of material of the bar loaded by uniaxial tension and pressure, the basic rheological 
models are the following ones. Let us consider a bar with a unit area cross section.  

a) Linear-elastic model of material 
The model consists of a linear spring 

 
 

 
 

 
Fig. 1.2 

 
Work diagram 

 
 

 
 

 
 

 

Fig. 1.3 
When the time is eliminated, we will get dependence 

σ = f (ε) = E ε .                                                   (1.4) 
This dependence is called Hooke’s law. The constant of proportionality E is 
denominated Young’s modulus of elasticity. 
The model of linear elastic material is the most often used model of technical 
materials, such as steel, Al and Mg alloys and some short-time loaded plastic 
materials.  
The linear elastic model of materials is suitable also for short-time loaded parts at 
elevated temperatures. However, it is necessary to consider Young’s modulus 
dependence on temperature. 
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b) Ideal viscose model of material 
The model is formed by a damper (cataract) with Newton liquid. 
 

 
 

 

 
Fig. 1.4 

Resistance of piston in the cataract grows linearly with the growth of piston 
displacement speed, i.e. 

•

⋅== εη
ε

ησ
dt
d  ,                                                      (1.5) 

where η is coefficient of viscosity. 
 

c) Ideal plastic model  of material 
The model allows linear motion of a body towed across a plane surface on condition of 
validity of Coulomb’s friction. 
 

 
 

 
 

 

 
Fig. 1.5 

 

Internal force (stress) necessary for overcoming the resistance against the motion is 
called the yield point and in literature is often designated as σk or σY. 

Point and direction of loading  
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1.3 – Elementary Rheological Models of Creep 
Creep is permanent (non-reversible) deformation realized at constant temperature and 
constant stress (or loading) depending on time. Graphically presented time dependence of 
deformation is called a creep curve (see Fig. 1.6). 

 
 

 
 

 
 

 

Fig. 1.6 
This curve describes (vs. time and stress) one, two or three stages of creep. The first stage, 
where the creep speed goes down following the immediate initial elongation, is called the 
stage of primary or transient creep. In the second stage the creep speed does not change with 
time. It is called the stage of secondary creep with the speed εs. In the third stage – the stage 
of tertiary creep – the creep speed dramatically grows with time. The tertiary stage results in 
fracture.   

Further let us show in what way the creep curve can be modelled by means of elementary 
rheological models in the primary and secondary stages for a uniaxially stressed bar.  

 

Voigt – Kelvin’s Model 
This model is created by parallel connection of a cataract and spring (see Fig. 1.7). 

 
 

 
 

 
 

 
 

Fig. 1.7 
 

Let us designate δp the elongation of the spring. This elongation is proportional to the force Pp 
acting in the spring, i.e. 

pp Pk ⋅= 1δ . 
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Similarly it is true for the cataract:           k
k Pk

dt
d .2=
δ

. 

It is clear from the Fig. 1.7 that for displacements δp and δk we can write: 
δ = δk = δp. . 

From the above mentioned figure also validity of the balance equation is obvious: 
P = Pp + Pk . 

If we replace forces Pp and Pk by the previous relations, we shall get: 

dt
d

kk
P δδ

⋅+=
21

1   .                                                      (1.6) 

If we substitute the stress σ for the forces P with, the deformation ε for the displacement δ 
with and coefficients k1 = 1/E and k2 = 1/η , then we can write: 

dt
dE ε

ηεσ +⋅=   .                                                    (1.7) 

Considering that the initial deformation is zero, the equation (1.7) can be integrated at 
constant stress σ. Thus we shall get the following exponential relation for the deformation ε. 

















⋅−−= tE

E η
σε exp1  .                                                 (1.8) 

It is clear from the equation (1.8) that for t → ∞ deformation ε tends to the value σ/E. Time 
behaviour of the deformation for the Voigh-Kelvin’s model of a viscoelastic body is 
schematically presented in the Fig. 1.8. 
 

 
 

 
 

 

Fig. 1.8 
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Standard Model 
This model consists of two ,,springs‘‘ and one cataract (damper). Connection of these 
members is obvious from the Fig. 1.9. 
 

 
 

 
 

 

 
 

Fig. 1.9 
It is valid: 







 ⋅+=⋅+ εβ

ε
σα

σ
dt
dE

dt
d

1  ,                                          (1.9) 

where 

η
α 21 EE +=          and            

η
β 2E= . 

At a sudden application of loading, the equation (1.9) comes down to the relation:  

     
dt
dE

dt
d εσ ⋅= 1 . 

Following the integration it is valid:    εσ ⋅= 1E  . 

For t = 0 it is the case of elastic deformation of the spring 1. The modulus E1 is called the 
immediate modulus of elasticity. 
In case of a very slow application of loading the derivation of stress and strain with respect of 
time is very small in comparison with other members in the equation (1.9). Having neglected 
the members with time derivations in the equation (1.9) we shall get: 

εε
α

βσ ⋅
+
⋅=⋅⋅=

21

211

EE
EEE

 . 

The quantity
21

21

EE
EE

+
⋅

  is often designated as the long-term modulus of elasticity. 

It is obvious that this long-term modulus is given by a linear connection of the spring 1 with 
the spring 2 (see fig.1.9) 

Integrating the equation (1.9) for σ = const., we shall get: 

P P 
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( )[ ]








⋅−−−+= t
E

β
β

βασε exp11
1

  .                              (1.10) 

The equations (1.7) and (1.9) are designated as constitutive equations of the given model of 
the viscoelasic body.  It is possible to construct models consisting of many elementary 
“springs” and “cataracts”. The constitution equation of such a viscoelastic body can then be 
generalized into the following formula: 

n

n

nn

n

n dt
db

dt
dbb

dt
da

dt
daa εεεσσσ +++⋅=⋅+++⋅ ...... 1010   .                   (1.11) 

 

1.4 – Elementary Models of Plasticity 
Plasticity is the ability of the body to be deformed permanently non-reversibly and 
independently of time due to the application of loading. 

The rheological model of ideal rigid-plastic material was presented in the chapter 1.2. 
Let us remind you that this model consists of a body towed across a horizontal rough surface. 
The permanent, non-reversible plastic deformation in the rigid-plastic body occurs when 
exceeding the yield point σk . 

Adding a linear spring in the series (see Fig. 1.10a) to the towed body, a rheological model of 
an ideal elasto-plastic material with the yield strength σk and modulus of elasticity E is 
created. Dependence of the stress σ on the deformation ε, i.e. deformation characteristic, is 
given in the Fig. (1.10b). 
 

 
 

 
 

 
 

Fig. 1.10 
Rheological model of an elastoplastic body with hardening is given in the Fig..(1.11a). 

Deformation characteristic of this model is in the Fig.(1.11b) 
 

 
 

 
 

Fig. 1.11 
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In the Fig. 1.11 means: 

kforEtg σσα ≤= 1  , 

kfor
EE
EE

tg σσβ ≥
+
⋅

=
21

21  . 

 

1.5 – Rheological Model of Elasto-Visco-Plastic Material 
During the deformation wave propagation or at high temperature low-cycle fatigue the 
viscous and plastic deformations can be mutually bound (viscoplastic material). Providing 
elastic response to the loading occurs too, an elastic-viscoplastic model can be created by 
means of the basic rheological models (see chapt.1.2) which is presented in the Fig. 1.12.  

 
 

 
 

 
 

Fig. 1.12 
Constitutive equations of this model have to distinguish the cases when the plastic 
deformations occur and when not. 
It is valid: 

( ) kk pro
dt
d

Edt
d σσσσ

η
σε ≥±+⋅= 11

  ,                             (1.12a) 

 

kpro
dt
d

Edt
d σσσε <⋅= 1

  .                                        (1.12b) 

In the equation 1.12a the upper sign is valid for tension (σ>0) and lower sign is valid for 
pressure (σ<0). 

σ (t) 

E 

η 

σk 


